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Global stability of complex balanced mechanisms
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We prove that the ω-limit set of any solution of a complex balanced chemical reaction
mechanism contains either a unique, positive complex balanced equilibrium point, or bound-
ary complex balanced equilibrium points. Then, using this result, we are able to provide
global stability results for three enzymatic mechanisms.

1. Introduction

The qualitative behavior of the solutions of chemical kinetic systems is studied
extensively in [7,10,11,15,17]. In particular, it is proved by Vol’pert in [15,17] that
the ω-limit set of any solution of a detailed balanced chemical reaction mechanism
consists of a single positive point of detailed balanced equilibrium, or of boundary
detailed balanced equilibrium points (theorem 3 in [15], and the theorem in section 3.4
in [17]). In this paper, we will present the equivalent result for complex balanced
chemical reaction mechanisms. Complex balanced mechanisms were first studied by
Horn, Jackson and Feinberg [7,10,11]. Furthermore, we will show that Vol’pert’s
theorem for detailed balanced mechanisms can be completely recovered by our result,
after we prove a key relationship between detailed balanced mechanisms and complex
balanced mechanisms.

In section 4, we will use our ω-limit set theorem to prove the global asymptotic
stability of a subclass of complex balanced mechanisms. This is the group of complex
balanced mechanisms that do not admit boundary equilibrium points. Moreover, we
will show that three different enzymatic mechanisms, two of which involve inhibitors,
are from this particular subclass, and hence, are globally asymptotically stable.

2. Background

The following is a short introduction to the terminology and notation of chemical
kinetics. For the most part, the notation to be used has been adopted from [1,2].
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However, to concisely prove some results in this paper, we will also use the notation
from [11]. Hence, in some instances below the same term will be defined with two
different notations. See [6,8,11] for a complete introduction to chemical kinetics.

2.1. Chemical reaction mechanisms

In general, a chemical reaction mechanism can be represented by

m∑
i=1

zp−(j)iAi
kj−→

m∑
i=1

zp+(j)iAi for all j = 1, . . . , r, (1)

where Ai, i = 1, . . . ,m, are the species involved in the r reactions of the mechanism.
The linear combinations of species to the left and right of the reaction arrow are referred
to as complexes, and zp−(j)i (respectively, zp+(j)i) is the stoichiometric coefficient of
species Ai in the reactant complex (respectively, product complex) of the jth reaction
of the mechanism. Finally, kj is rate constant of the jth reaction [1,2].

If we assume a mechanism consists of n distinct complexes, (1) can also be
represented by

Ci
k(i,j)−→ Cj for all i, j = 1, . . . ,n, (2)

where Cl =
∑m

k=1 zlkAk is a complex, and k(i, j) is the rate constant for the reaction
with reactant complex Ci and product complex Cj [11]. Note that k(i, j) = 0 if either
i = j, or the mechanism does not contain a reaction with Ci as the reactant and Cj as
the product. Otherwise, k(i, j) > 0.

A chemical reaction mechanism can also be expressed as a graph theoretical
digraph. See [3,9] for the definition of a digraph, and the following two definitions
are from [7,10,11]:

Definition 2.1. The HJF-graph of a chemical reaction mechanism is a digraph, where
the vertices represent the distinct complexes of the mechanism and the arcs indicate
the reactions between the complexes.

Definition 2.2. The linkage classes of a chemical reaction mechanism are the con-
nected components of the HJF-graph. The number of linkage classes in a mechanism
will be denoted by `.

If we assume the chemical reaction mechanism (1) is endowed with mass action
kinetics, the evolution of its species concentrations xi(t), i = 1, . . . ,m, can be modeled
by the system of differential equations

ẋ = F (x) =
r∑
j=1

Rjvj(x), (3)
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where

Rj = zp+(j) − zp−(j) (4)

is the reaction vector, and

vj(x) = kj

m∏
i=1

x
zp−(j)i
i (5)

is the rate function of the jth reaction of the mechanism.

2.2. Equilibria

Two special types of equilibria of (3) will be considered [7,10,11]:

Definition 2.3. A concentration x∗ will be called a complex balanced equilibrium point
of (3) if and only if for every complex p of the mechanism, the sum of the rates of
the reactions with p as a reactant equals the sum of the rates of the reactions with p
as a product. That is, ∑

p+(j)=p

vj(x∗) =
∑

p−(j)=p

vj(x∗),

where vj(x) is defined in (5). Alternatively,
n∑
j=1

k(j, i)
(
x∗
)(j)

=
(
x∗
)(i)

n∑
j=1

k(i, j) for all i, . . . ,n,

where (x∗)(k) =
∏m
i=1(x∗i )

zki .

Definition 2.4. A concentration x∗ will be called a detailed balanced equilibrium point
of (3) if and only if the rate of the reaction p → p′ equals the rate of the reaction
p′ → p. That is, vp→p′(x∗) = vp′→p(x∗), or alternatively,

k(i, j)
(
x∗
)(i)

= k(j, i)
(
x∗
)(j)

for all i, j = 1, . . . ,n.

Remark 2.5. We will say that a chemical reaction mechanism is complex balanced
(respectively, detailed balanced) if it admits a positive complex balanced equilibrium
point (respectively, positive detailed balanced equilibrium point) for at least one set of
positive rate constants.

Before theorems on the structural nature of complex balanced and detailed bal-
anced mechanisms can be given, the following graph theoretical terminology and the-
orem are required [3]:

Definition 2.6. If a = (u, v) is an arc of a digraph D, we say u is adjacent to v and v
is adjacent from u.
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Definition 2.7. The outdegree od(v) of a vertex v of a digraph D is the number of
vertices of D that are adjacent from v.

Definition 2.8. Let u and v be (not necessarily distinct) vertices of a digraph D. A u–v
walk of D is a finite, alternating sequence

u = u0, a1,u1, a2, . . . ,un−1, an,un = v

of vertices and arcs, beginning with u and ending with v, such that ai = (ui−1,ui) for
i = 1, . . . ,n.

Definition 2.9. A vertex v is said to be reachable from a vertex u in a digraph D if
D contains a u–v walk.

Definition 2.10. A digraph D is strongly connected if for every two distinct vertices
of D, each vertex is reachable from the other.

Definition 2.11. If Di is a subdigraph of D and Di is strongly connected, then Di is
called a strong component of D.

Definition 2.12. Let D1,D2, . . . ,Dn be the strong components of D. Then, the con-
densation D∗ of D is that digraph whose vertices u1,u2, . . . ,un can be put in one-to-
one correspondence with the strong components, where (ui,uj) is an arc of D∗, i 6= j,
if and only if some vertex of Di is adjacent to at least one vertex of Dj .

Theorem 2.13 (Theorems 15.4 and 15.8 in [3]).The condensation of every digraph
contains at least one vertex of outdegree zero.

Additionally, the following chemical kinetics terminology is needed [8,10]:

Definition 2.14. A chemical reaction mechanism is said to be weakly reversible if in
its corresponding HJF-graph, every vertex is reachable from every other vertex.

Definition 2.15. A chemical reaction mechanism is said to be reversible if in its cor-
responding HJF-graph, the vertex v being adjacent to the vertex u implies that the
vertex u is adjacent to the vertex v.

We are now prepared to give two results for complex balanced and detailed
balanced mechanisms. Note, if x ∈ Rm, by x > 0 we mean that xi > 0 for all
i = 1, . . . ,m.

Theorem 2.16. Every complex balanced mechanism is weakly reversible.
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Proof. Let a be a positive, complex balanced equilibrium point of the mechanism.
Hence, according to definition 2.3,

n∑
j=1

k(j, i)a(j) = a(i)
n∑
j=1

k(i, j)

for all i = 1, . . . ,n, or equivalently,

−
n∑
i=1

k(1, i) k(2, 1) . . . k(n, 1)

k(1, 2) −
n∑
i=1

k(2, i) . . . k(n, 2)

...
...

. . .
...

k(1,n) k(2,n) . . . −
n∑
i=1

k(n, i)




a(1)

a(2)

...
a(n)

 =


0
0
...
0

 . (6)

Notice that the sum of the entries in each column of the above matrix is zero.
Now, suppose the mechanism is not weakly reversible. This implies that the

HJF-graph of at least one linkage class in the mechanism is not strongly connected,
and hence, the condensation, D∗l , of that linkage class consists of more than one vertex.
Furthermore, according to theorem 2.13, there exists at least one vertex, say u ∈ D∗l ,
such that od(u) = 0.

Let Su be the indexing set of complexes in the strongly connected subdigraph
corresponding to u ∈ D∗l , and let k = |Su|. If we let v1 be a k-vector with entries
a(i), i ∈ Su, and v2 be an (n − k)-vector with entries a(j), j /∈ Su, then (6) can be
rewritten as [

A B
0 C

] [
v1

v2

]
=

[
0
0

]
, (7)

where A is a k×k matrix with form identical to the matrix in (6). It follows then that
1 · Av1 = 0, where 1 is a k-vector with each component equal to one. Furthermore,
from (7) we have

1 ·Bv2 = 0, (8)

where v2 > 0. However, 1·Bv2 > 0 due to the fact that B has nonnegative entries and
at least one positive entry, since linkage classes are connected. Thus, a contradiction
is reached and the proof is complete. �

Theorem 2.17. Every detailed balanced mechanism is reversible.

Proof. Follows directly from definition 2.4. �
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2.3. Positivity and compatibility classes

The solutions to (3) are not able to wander freely Rm, they are restricted in two
different ways.

First of all, as proven by Vol’pert in [16,17], solutions are limited to Pm, where
Pm = {x ∈ Rm | xi > 0 for i = 1, . . . ,m}. The statement and proof of their following
result requires the use of the mechanism’s corresponding Vol’pert graph. A Vol’pert
graph is a finite directed bipartite graph (see [9]), where the vertex ai represents the
species Ai in the mechanism.

Theorem 2.18 (Strict positiveness). If x(t) is the solution to (3), together with a set
of nonnegative initial concentrations on the interval [0, β), then xi(t) > 0 (0 < t < β)
for all vertices ai that are reachable from A0, and xi(t) ≡ 0 for all vertices ai that are
nonreachable from A0.

Secondly, solutions to (3) are confined to stoichiometric compatibility classes [8,
10]:

Definition 2.19. The stoichiometric subspace for a chemical reaction mechanism is
the linear subspace S ∈ Rm defined by

S := span
{
Rj ∈ Rm: j = 1, . . . , r

}
,

where Rj is defined in (4). The dimension of the stoichiometric subspace will be
denoted by dimS.

Definition 2.20. The stoichiometric compatibility class (respectively, positive stoichio-
metric compatibility class) containing the composition x0 ∈ Pm (respectively, x0 ∈ Pm)
is the set (x0 + S) ∩ Pm.

Positive stoichiometric compatibility classes can also be expressed as a system
of equations called conservation laws [5,14]:

Definition 2.21. Conservation laws are equations of the form

λi · x = γi,

where S⊥ = span{λi: i = 1, . . . ,m − dimS}, and λi 6= 0 and γi ∈ R for all
i = 1, . . . ,m− dimS.

If λij > 0 and γi > 0 for all i = 1, . . . ,m − dimS and j = 1, . . . ,m, then the
system of equations will be referred to as positive conservation laws.

2.4. Asymptotic stability

In [7,10,11], Horn, Jackson and Feinberg characterize a class of chemical reaction
mechanisms that have a unique, positive, asymptotically stable equilibrium point in
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each compatibility class. Before we can state their result, the following definition is
needed:

Definition 2.22. The deficiency of a chemical reaction mechanism, δ, is defined as
δ = n − ` − dimS where n is the number of complexes, ` is the number of linkage
classes, and dimS is the dimension of the stoichiometric subspace.

Theorem 2.23 (Deficiency Zero theorem). For any chemical reaction mechanism with
zero deficiency, the following statements hold true:

1. If the mechanism is not weakly reversible then, for arbitrary kinetics (not necessarily
mass action), the differential equations for the corresponding reaction system cannot
admit either a positive equilibrium point or a cyclic composition trajectory along
which all the species concentrations are positive.

2. If the mechanism is weakly reversible then, for mass action kinetics (but regardless
of the positive values the rate constants take), the differential equations for the
corresponding reaction system have the following properties:

• there exists within each positive stoichiometric compatibility class precisely one
positive equilibrium point;

• that equilibrium point is asymptotically stable; and

• there is no nontrivial cyclic composition trajectory along which all species con-
centrations are positive.

The proof of the Deficiency Zero involves a Liapunov function. The Liapunov
function used is

H(x) =
m∑
i=1

[
xi(ln xi − ln ai − 1) + ai

]
, (9)

with time derivative

Ḣ(x) = (ln x− ln a) · F (x), (10)

where a ∈ Pm is a positive equilibrium point of the given mechanism. This Liapunov
function is classical to chemical kinetics, and will be used in the proof of a later
theorem.

In the next section we will present our major result, which provides new informa-
tion on the qualitative nature of weakly reversible, deficiency zero mechanisms. It is
important to note, however, that the result will hold true for the larger class of complex
balanced mechanisms, of which weakly reversible, deficiency zero mechanisms are a
subclass [10]:

Theorem 2.24. A necessary and sufficient condition for a mechanism to be complex
balanced for any set of positive rate constants is that the following two requirements
are met:
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1. The mechanism is weakly reversible.

2. δ = 0.

3. ω-limit set theorem

Given a weakly reversible, deficiency zero mechanism, it is known from the
Deficiency Zero theorem that a solution, beginning at an initial condition sufficiently
close to its uniquely compatible positive equilibrium point, will ultimately approach
that positive equilibrium point. What are the dynamics of the rest of the solutions
in the positive compatibility class? In this section, we will present a theorem which
greatly limits the possibilities.

Before we introduce the theorem, some terminology and a theorem from [13]
must first be stated.

For the general autonomous system

ẋ = f(x), (11)

with f ∈ C1(E) where E is an open set of Rn, let ψt :E → E, t ∈ R, define the
flow of the system. If x0 ∈ E, let x(t) = ψt(x0) denote the solution of (11) satisfying
x(0) = x0.

Theorem 3.1. For (11), x0 ∈ E, the ω-limit set, ω(x0), of ψt(x0) is a closed subset
of E, and if ψt(x0) is contained in a compact subset of Rm, then ω(x0) is a non-empty,
connected, compact subset of E.

Furthermore, the following notation related to the pth complex of a chemical
reaction mechanism will be used. This notation is from [2]:

up(x) =
m∏
i=1

x
zpi
i , (12)

wp(x) =
∑

p+(j)=p

vj(x) −
∑

p−(j)=p

vj(x), (13)

αp(x, a) =
m∏
i=1

(
xi
ai

)zpi
=
up(x)
up(a)

, (14)

αp−(j)(x, a) =
vj(x)
vj(a)

, (15)

where vj(x) is defined in (5).
We are now ready to present the major result, which actually pertains to the larger

class of complex balanced mechanisms.

Theorem 3.2 (ω-limit set theorem). Let (1) be a complex balanced chemical reaction
mechanism, and let a be the positive complex balanced equilibrium point admitted
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by the mechanism. Then, for a solution of (3) beginning at the concentration x0,
the ω-limit set, ω(x0), of the solution consists either of boundary points of complex
balanced equilibria or of a single positive point of complex balanced equilibrium.

It is important to note that theorem 3.2 holds true for any compatibility class
of a complex balanced mechanism. That is, the theorem is not restricted to positive
stoichiometric compatibility classes. However, in section 4, theorem 3.2 will be applied
only to positive compatibility classes in order to obtain global stability results.

The proof of theorem 3.2 requires the following lemmas and theorem:

Lemma 3.3. Let x(t) be a solution, and L be the set of linkage classes of a weakly
reversible chemical reaction mechanism. Then for every linkage class l ∈ L, either
vj(x) ≡ 0 or vj(x) > 0 for every j where p±(j) ∈ l, t > 0.

Proof. Suppose the assertion is not true. This implies that for some t∗ > 0 and for
some linkage class l ∈ L,

vj∗
(
x
(
t∗
))
> 0 and vj∗∗

(
x
(
t∗
))

= 0,

where j∗ and j∗∗ are such that p±(j∗), p±(j∗∗) ∈ l. Now, according to Vol’pert
in [15,16], since vj∗(x) > 0, the vertex bj∗ in the mechanism’s corresponding Vol’pert
graph will receive an index from Vol’pert’s indexing method. Consequently, all ai
vertices representing species in p+(j∗) will receive an index, and furthermore, all
vertices representing reactions with p+(j∗) as the reactant complex will also receive
an index. Using the same argument, it follows that any bk vertex representing a reaction
in a directed arrow pathway between the complex p+(j∗) and some complex p̄ will be
indexed, implying that vk(x) > 0. Since the mechanism is weakly reversible, there is
a directed arrow pathway between p+(j∗) and p−(j∗∗). Thus, vj∗∗(x) > 0, which is a
contradiction, and the proof is complete. �

Theorem 3.4. Along a nonnegative solution x(t) of a complex balanced mechanism,
the Liapunov function (9) does not increase, and is constant if and only if x(t) is an
equilibrium point. Additionally, if x(t) is an equilibrium point, then it is a complex
balanced equilibrium point.

The proof of this theorem is based on the proof of theorem 2 in [2].

Proof. According to theorem 2.16 and lemma 3.3, the linkage classes of a complex
balanced mechanism can be partitioned into two groups, one with strictly positive rate
functions for t > 0, and the other with identically zero rate functions. Let L be the set
of all linkage classes in the mechanism, and let L′ ⊂ L be the set of linkage classes
such that if l ∈ L′ then vj(x) > 0 for every j where p±(j) ∈ l, t > 0. Therefore,
it follows that if l ∈ L\L′, then vj(x) ≡ 0 for every j where p±(j) ∈ l, t > 0.
Furthermore, let {S ′,L′} represent the mechanism consisting only of linkage classes
from L′, where S ′ is the set of species in the linkage classes contained in L′.
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First, suppose L′ = ∅. Consequently, vj(x) ≡ 0 for every j = 1, . . . , r, and
moreover, F (x) = 0. This implies that x(t) is an equilibrium point of the mechanism,
and that the time derivative of the Liapunov function (10) is equal to zero. Furthermore,
according to definition 2.3, x(t) is trivially a complex balanced equilibrium point, and
the proof is complete.

Next, suppose L′ 6= ∅. Since the reactions in L\L′ contribute nothing to the rate
of change of species concentrations, it follows that if we restrict the state-space of the
solution to only those species in S ′, then the vector x̄(t), where x̄i ∈ {xj | Aj ∈ S ′} for
i = 1, . . . , |S′|, is a solution of {S ′,L′}. This solution is positive for t > 0 according
to theorem 5 in [16], since vj(x) > 0 for every reaction j where p±(j) ∈ l, l ∈ L′.
Consequently, if we define H as a function of vectors in the state-space consisting
only of species in S ′, with H having the form of (9), then the time derivative of H ,

Ḣ
(
x̄
)

=
∑
l∈L′

∑
p±(j)∈l

vj
(
x̄
)
Rj
(
ln x̄− ln ā

)
, (16)

is defined for t > 0, where āi ∈ {aj | Aj ∈ S ′} for i = 1, . . . , |S ′|.
Now, using lemma 3.5 in [2], it follows that

Ḣ(x̄)6
∑
l∈L′

∑
p∈l

αp
(
x̄, ā
)
wp
(
ā
)
− 1

2

∑
l∈L′

∑
p±(j)∈l

[
vj
(
ā
)

min
[
αp+(j)

(
x̄, ā
)
,αp−(j)

(
x̄, ā
)]

×
(
lnαp+(j)

(
x̄, ā
)
− lnαp−(j)

(
x̄, ā
))2
]
.

Since the original mechanism is complex balanced at a it follows immediately from
definition 2.3 that {S ′,L′} is complex balanced at ā. Therefore, wp(ā) = 0 for every
p ∈ l, l ∈ L′ , which gives us

Ḣ
(
x̄
)
6−1

2

∑
l∈L′

∑
p±(j)∈l

[
vj(ā) min

[
αp+(j)

(
x̄, ā
)
,αp−(j)

(
x̄, ā
)]

×
(
lnαp+(j)

(
x̄, ā
)
− lnαp−(j)

(
x̄, ā
))2
]

6 0. (17)

Hence, along the positive solution x̄(t) of {S ′,L′}, H(x̄) does not increase for t > 0.
Therefore, if we assume H has been extended to be continuous on the boundary of the
state-space, we can conclude that the Liapunov function H does not increase along
the nonnegative solution x(t) of {S,L} for t > 0.

For the second part of the assertion, from (16) it is straightforward that if x̄(t) is

a positive equilibrium point of {S ′,L′}, then Ḣ(x̄(t)) = 0. Hence, it can be concluded
from continuity that H is constant along the equilibrium point x(t). Finally, suppose



D. Siegel, D. MacLean / Global stability of complex balanced mechanisms 99

Ḣ(x̄(t)) = 0. From (17), since vj(x̄) > 0 for every reaction j where p±(j) ∈ l, l ∈ L′,
it follows that

αp+(j)

(
x̄, ā
)

= αp−(j)

(
x̄, ā
)

(18)

for every reaction j where p±(j) ∈ l, l ∈ L′. Therefore, since

wp
(
x̄
)

=
∑

p+(j)=p

αp−(j)
(
x̄, ā
)
vj
(
ā
)
−

∑
p−(j)=p

αp−(j)
(
x̄, ā
)
vj
(
ā
)
,

after substituting (15) into (13), it follows from (18) that

wp
(
x̄
)

=αp(j)
(
x̄, ā
) ∑
p+(j)=p

vj
(
ā
)
− αp(j)

(
x̄, ā
) ∑
p+(j)=p

vj
(
ā
)

=αp(j)
(
x̄, ā
)
wp
(
ā
)
.

Now, since ā is a complex balanced equilibrium point of {S ′,L′}, then wp(ā) = 0,
which implies that wp(x̄) = 0. Thus, we can conclude that x̄(t) is a positive complex
balanced equilibrium of {S ′,L′}, and moreover, from the continuity of H that x(t) is
an equilibrium point of {S,L}. Furthermore, x(t) is a complex balanced equilibrium
point since all complexes in the linkage classes contained L\L′ are trivially complex
balanced at x(t). This finishes the proof of theorem 3.4. �

Lemma 3.5. The solution x(t) of a complex balanced mechanism, with arbitrary
nonnegative initial conditions xi(0) > 0, i = 1, . . . ,m, exists and is bounded for
t ∈ [0,∞).

Proof. By theorem 2 in section 2.4 of [13], either x(t) exists for all t > 0 or ‖x(t)‖
is unbounded. Suppose ‖x(t)‖ → ∞ for t > 0. Since we are assuming H(x(t)) has
been extended to be continuous for t > 0, this implies that H(‖x(t)‖) →∞. However,
according to theorem 3.4, for t > 0,

H
(
x(t)
)
6 H

(
x(0)

)
, where H

(
x(0)

)
> 0.

Thus, a contradiction has been reached.
Now, suppose the solution is not bounded. This implies that there exists a se-

quence {tn}, tn → ∞, such that ‖x(tn)‖ → ∞. Following the same argument as
above, a contradiction is achieved, and the proof is complete. �

Lemma 3.6. If a chemical reaction mechanism is complex balanced, then there exists
a unique, positive complex balanced equilibrium point in each compatibility class.

Proof. The result follows directly from theorem 3.4, and theorem 6A and lemma 4B
in [11]. �

We are now able to prove theorem 3.2. The proof is based on the proof of
theorem 4 in section 3.4 of [17].
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Proof of ω-limit set theorem. According to theorem 3.4, the Liapunov function H
does not increase along a nonnegative solution. As well, H(x) is bounded from below.
Thus, the limit

lim
t→∞

H
(
x(t)
)

= H0

exists. That is, H(x(t)) approaches a constant value with increasing time.
Now, for the solution beginning at the initial concentration x0, let y ∈ ω(x0).

A limit point exists as a result of lemma 3.5 and theorem 3.1. Therefore, from the
continuity of H we have

H
(
x(t)
)
→ H(y) as t→∞,

which implies that ω(x0) ∈ {x | H(x) = H0}. Furthermore, since according to theo-
rem 3.1 ω(x0) is invariant, and theorem 3.4 tells us that H remains constant only for
complex balanced equilibrium points, then it can be concluded that ω(x0) consists only
of complex balanced equilibrium points.

Suppose ω(x0) contains a positive complex balanced equilibrium point, x∗. From
lemma 3.6, x∗ is the only positive equilibrium in its compatibility class. Therefore,
since ω(x0) is a connected set, it follows that ω(x0) does not contain any boundary
complex balanced equilibria. This completes the proof of the theorem. �

Hence, according to theorem 3.2, a solution of a complex balanced mechanism
is restricted to approaching either its uniquely compatible positive equilibrium point,
or its compatible boundary equilibrium points.

From theorem 3.2 we have the following corollary:

Corollary 3.7. Let (1) be a complex balanced mechanism. Then, every equilibrium
point admitted by the mechanism is complex balanced.

Proof. The proof follows directly from the last part of the proof of theorem 3.2. �

Furthermore, from theorem 2.24, we obtain the following equivalent result for
weakly reversible, deficiency zero mechanisms:

Corollary 3.8. Let (1) be a weakly reversible, deficiency zero chemical reaction mech-
anism. Then, the ω-limit set of any solution consists either of boundary points of com-
plex balanced equilibria or of a single positive point of complex balanced equilibrium.

Proof. According to theorem 2.24, a weakly reversible, deficiency zero mechanism
is complex balanced for all positive sets of rate constants, and hence, the proof follows
directly from theorem 3.2. �

In the next section we will use corollary 3.8 to prove the global asymptotic
stability of a certain class of weakly reversible, deficiency zero mechanisms. But
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before we proceed to the next section, there is one last corollary of theorem 3.2 that
we would like to present:

Corollary 3.9. Let (1) be a reversible chemical reaction mechanism that admits a
positive detailed balanced equilibrium point. Then, the ω-limit set of any solution
consists either of boundary points of detailed balanced equilibria or of a single positive
point of detailed balanced equilibrium.

The proof of this result requires the following theorem:

Theorem 3.10. Let (1) be a complex balanced mechanism that admits a positive de-
tailed balanced equilibrium point. Then, every complex balanced equilibrium point
admitted by the mechanism is detailed balanced.

Proof. Let a be a positive detailed balanced equilibrium and b be a nonnegative
complex balanced equilibrium of the mechanism. Let L be the set of linkage classes
of the mechanism, and if l ∈ L, then we will denote the number of complexes in l
by nl.

According to definition 2.4 and definition 2.3, respectively, for every linkage
class l ∈ L,

k(j, i)a(j) = k(i, j)a(i) for all i, j = 1, . . . ,nl (19)

and
nl∑
j=1

k(j, i)b(j) = b(i)
nl∑
j=1

k(i, j) for all i = 1, . . . ,nl, (20)

where

a(k) =
m∏
i=1

azkii and b(k) =
m∏
i=1

bzkii .

Now, if we solve for k(j, i) in (19) and substitute into (20) we have

nl∑
j=1

k(i, j)
a(i)b(j)

a(j) = b(i)
nl∑
j=1

k(i, j) for all i = 1, . . . ,nl,

which can also be expressed as

nl∑
j=1

k(i, j)w(j) = w(i)
nl∑
j=1

k(i, j) for all i = 1, . . . ,nl, (21)

where w(k) = (b(k)/a(k)). If it can be shown that w(k) = λl for all k = 1, . . . ,nl,
λl > 0, we will have proved the theorem.
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According to lemma 3.3, either b(k) ≡ 0 or b(k) > 0 for all k = 1, . . . ,nl, t > 0.
If b(k) ≡ 0 then w(k) ≡ 0 for all k = 1, . . . ,nl, and the proof is complete. Thus, we
will assume that b(k) > 0 for all k = 1, . . . ,nl, which implies that w(k) > 0 for all
k = 1, . . . ,nl. Furthermore, we will assume that the w(k)’s are not all equal to each
other, and hence, prove the result by arriving at a contradiction.

Suppose the w(k)’s have been relabeled so that

w(1) = w(2) = · · · = w(l) > w(l+1) > · · · > w(nl),

where 1 6 l 6 nl. It follows then that

k(i, j) = 0 for all 1 6 i 6 l, l < j < nl, (22)

in order for (21) to hold for 1 6 i 6 l, because otherwise

−w(i)
nl∑
j=1

k(i, j) +

nl∑
j=1

k(i, j)w(j) <w(i)

[
−

nl∑
j=1

k(i, j) +

nl∑
j=1

k(i, j)

]
= 0.

However, from (22) and (19), we have

k(j, i) = 0 for 1 < i 6 l, l < j 6 nl, (23)

which together with (22) implies that the linkage class l is not connected. This is a
contradiction of definition 2.2, and we are done. �

Proof of corollary 3.9. If a chemical reaction mechanism is detailed balanced, it
follows immediately that the mechanism is complex balanced. Furthermore, from
theorem 3.10, we know that every equilibrium point of the complex balanced mecha-
nism is detailed balanced. Therefore, the proof of the corollary follows directly from
theorem 3.2. �

4. Global stability results

If a weakly reversible, deficiency zero mechanism does not admit an equilibrium
point on the boundary of the compatibility class containing the positive equilibrium x∗,
corollary 3.8 tells us that ω(x0) = x∗ for any compatible solution, ψt(x0), of the
mechanism. Therefore, we have the following result:

Theorem 4.1. If a weakly reversible, deficiency zero mechanism does not admit
boundary equilibrium points in any positive compatibility class, then the unique posi-
tive equilibrium point in each compatibility class is globally asymptotically stable.

Proof. The result follows directly from corollary 3.8. �

It is important to emphasize that when we speak of a globally asymptotically
stable positive equilibrium x∗, we mean that it is globally stable with respect to the
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concentrations in its positive compatibility class. That is, x∗ is globally stable in
(x0 + S) ∩ Pm.

We will next apply theorem 4.1 to some particular weakly reversible, deficiency
zero mechanisms. However, before we do, it is of interest to note that a result similar
to theorem 4.1 is presented by Chen and Siegel in [5,14].

Assuming that their weakly repelling condition (condition 4.8 in [5], condition 1
in [14]) is satisfied, Chen and Siegel prove that weakly reversible, deficiency zero
mechanisms are globally asymptotically stable (theorem 4.11 in [5], theorem 4 in [14]).
However, the weakly repelling condition is a sufficient condition for the nonexistence
of boundary equilibria. Therefore, theorem 4.1 is a generalization of the result given
in [5,14].

4.1. Enzymatic mechanisms

Many reactions in biochemistry would not proceed under normal conditions with-
out the presence of an enzyme. We will refer to mechanisms containing enzyme-
catalyzed reactions as enzymatic mechanisms. To regulate the yield of an enzymatic
mechanism, an inhibitor complex interacts with the enzyme and/or enzyme–substrate
complex to prevent the reaction from going to completion [4,12]. In this section, we
will give three examples of enzymatic mechanisms, two of which involve inhibitors,
that are globally asymptotically stable.

In addition, note that the global stability of the single-substrate single-product
enzymatic mechanism

S +E
k1

k−1

C1
k2

k−2

· · ·
kn

k−n

Cn
kn+1

k−(n+1)

P +E,

given by Chen and Siegel in [14], can also be determined by the method given below.
Before we present the three enzymatic mechanisms, there is some notation that

must first be introduced.
For k = 1, . . . ,n, let Sk represent a substrate, Ck represent an enzyme–substrate

complex, Pk represent a product, and Dk represent a deactivated complex. Further-
more, let E represent an enzyme and I represent an inhibitor. In the following enzy-
matic mechanisms, the lower case letters will represent the concentrations correspond-
ing to the upper case letters.

4.1.1. General enzymatic mechanism
Consider a one-enzyme, n-substrate, n-product enzymatic mechanism:

S1 +E
k1

k−1

C1
k2

k−2

P1 +E,

S2 +E
k3

k−3

C2
k4

k−4

P2 +E,
(24)...

Sn +E
k(2n−1)

k−(2n−1)

Cn
k2n

k−2n

Pn +E.
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This mechanism is weakly reversible, deficiency zero, and the evolution of its
species concentrations is modeled by the following system of differential equations:

ṡ1 =−k1s1e+ k−1c1,
...

ṡn =−k(2n−1)sne+ k−(2n−1)cn,

ṗ1 = k2c1 − k−2p1e,
...

ṗn = k2ncn − k−2npne, (25)

ċ1 = k1s1e− k−1c1 − k2c1 + k−2p1e,
...

ċn = k(2n−1)sne− k−(2n−1)cn − k2ncn + k−2npne,

ė=−k1s1e− · · · − k(2n−1)sne+ k−1c1 + · · ·+ k−(2n−1)cn

+ k2c1 + · · · + k2ncn − k−2p1e− · · · − k−2npne.

To prove that the enzymatic mechanism (24) does not admit equilibrium points
on the boundary of any positive compatibility class, we will need the help of the mech-
anism’s positive conservation laws. As explained in definition 2.21, the mechanism
has dimS⊥ = n + 1 linearly independent conservation laws. To find these positive
conservation laws, we simply look at (25) for nonnegative linear combinations of dif-
ferential equations so that the right-hand sides of the equations add up to zero. The
following are n+ 1 such combinations:

ṡ1 + ċ1 + ṗ1 = 0,

ṡ2 + ċ2 + ṗ2 = 0,
...

ṡn + ċn + ṗn = 0,

ė+ ċ1 + ċ2 + · · ·+ ċn = 0.

By integrating both sides of the above equations with respect to time, we obtain
the following n+ 1 linearly independent, positive conservation laws for the enzymatic
mechanism (24):

s1 + c1 + p1 = γ1

s2 + c2 + p2 = γ2

...

sn + cn + pn = γn

e+ c1 + c2 + · · ·+ cn = γn+1,
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where γi > 0 for i = 1, . . . ,n+ 1, as we are only interested in solutions that exist in
positive stoichiometric compatibility classes.

Theorem 4.2. The enzymatic mechanism (24) admits no boundary equilibrium points
in any positive compatibility class.

Proof. To prove this theorem we will assume that the mechanism admits an equilib-
rium point, denoted by (s∗1, . . . , s∗n, p∗1, . . . , p∗n, c∗1, . . . , c∗n, e∗), where a particular com-
ponent of the equilibrium is equal to zero. Then, using the positive conservation
laws and theorem 2.18 we will arrive at a contradiction. This will be done for each
component of the equilibrium point.

Suppose ∃k, k = 1, . . . ,n, such that s∗k = 0.
⇒ c∗k = 0 (from theorem 2.18),
⇒ p∗k > 0 (from conservation laws),
⇒ e∗ = 0 (from theorem 2.18),
⇒ ∃j, j 6= k, such that c∗j > 0 (from conservation laws),
⇒ e∗ > 0 (from theorem 2.18).
Contradiction.

Due to the symmetry of the mechanism, p∗k, k = 1, . . . ,n, is not equal to zero.

Suppose ∃k, k = 1, . . . ,n, such that c∗k = 0.
⇒ s∗k > 0 or p∗k > 0 (from conservation laws),
⇒ e∗ = 0 (from theorem 2.18),
⇒ ∃j, j 6= k, such that c∗j > 0 (from conservation laws),
⇒ e∗ > 0 (from theorem 2.18).
Contradiction.

Suppose e∗ = 0.
⇒ c∗k = 0, ∀k, k = 1, . . . ,n (from theorem 2.18).
Contradiction of conservation laws.

Therefore, there are no boundary equilibrium points admitted by (24) and the
proof is complete. �

Theorem 4.3. The enzymatic mechanism (24) has a unique positive equilibrium point
in each positive compatibility class that is globally asymptotically stable.

Proof. The result follows directly from theorem 4.2 and theorem 4.1. �

4.2. General enzymatic mechanism with uncompetitive inhibitor

Consider a one-enzyme, n-substrate, n-product enzymatic mechanism that is reg-
ulated by an uncompetitive inhibitor. The uncompetitive inhibitor binds to the enzyme–
substrate complex in each of the n reactions, rendering them inactive [12]:
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S1 +E
k1

k−1

C1
k2

k−2

P1 +E,

S2 +E
k3

k−3

C2
k4

k−4

P2 +E,

...

Sn +E
k(2n−1)

k−(2n−1)

Cn
k2n

k−2n

Pn +E,

(26)

C1 + I
k(2n+1)

k−(2n+1)

D1,

C2 + I
k(2n+2)

k−(2n+2)

D2,

...

Cn + I
k(3n)

k−(3n)

Dn.

This mechanism is weakly reversible, deficiency zero, and has the following
dimS⊥ = n + 2 positive conservation laws. These positive conservation laws were
found by applying the method used in section 4.1.1:

s1 + p1 + c1 + d1 = γ1,
s2 + p2 + c2 + d2 = γ2,

...
sn + pn + cn + dn = γn,

e+ c1 + c2 + · · · + cn + d1 + d2 + · · ·+ dn = γn+1,
i+ d1 + d2 + · · ·+ dn = γn+2,

where γi > 0 for i = 1, . . . ,n+ 2, as we are only interested in solutions that exist in
positive stoichiometric compatibility classes.

Theorem 4.4. The enzymatic mechanism (26) admits no boundary equilibrium points
in any positive compatibility class.

Proof. Assuming the mechanism admits an equilibrium point, denoted by (s∗1, . . . , s∗n,
p∗1, . . . , p∗n, c∗1, . . . , c∗n, d∗1, . . . , d∗n, i∗, e∗), the proof of this theorem is identical in form
to the proof of theorem 4.2.

Suppose ∃k, k = 1, . . . ,n, such that s∗k = 0.
⇒ c∗k = 0 (from theorem 2.18),
⇒ d∗k = 0 (from theorem 2.18),
⇒ p∗k > 0 (from conservation laws),
⇒ e∗ = 0 (from theorem 2.18),
⇒ c∗j = 0, ∀j = 1, . . . ,n (from theorem 2.18),
⇒ d∗j = 0, ∀j = 1, . . . ,n (from theorem 2.18).
Contradiction of conservation laws.
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Due to the symmetry of the mechanism, p∗k, k = 1, . . . ,n, is not equal to zero.

Suppose ∃k, k = 1, . . . ,n, such that c∗k = 0.
⇒ d∗k = 0 and [(s∗k = 0 and p∗k = 0) or e∗ = 0] (from theorem 2.18).
If d∗k = 0 and s∗k = 0 and p∗k = 0,

contradiction of conservation laws.
If d∗k = 0 and e∗ = 0,
⇒ c∗j = 0, ∀j = 1, . . . ,n (from theorem 2.18),
⇒ d∗j = 0, ∀j = 1, . . . ,n (from theorem 2.18).
Contradiction of conservation laws.

Suppose e∗ = 0.
⇒ c∗j = 0, ∀j = 1, . . . ,n (from theorem 2.18),
⇒ d∗j = 0, ∀j = 1, . . . ,n (from theorem 2.18).
Contradiction of conservation laws.

Suppose ∃k, k = 1, . . . ,n, such that d∗k = 0.
⇒ c∗k = 0 or i∗ = 0 (from theorem 2.18).
If c∗k = 0,
⇒ e∗ = 0 or (s∗k = 0 and p∗k = 0) (from theorem 2.18).
If s∗k = 0 and p∗k = 0,

contradiction of conservation laws.
If e∗ = 0,
⇒ c∗j = 0, ∀j = 1, . . . ,n (from theorem 2.18),
⇒ d∗j = 0, ∀j = 1, . . . ,n (from theorem 2.18).
Contradiction of conservation laws.

If i∗ = 0,
⇒ d∗j = 0, ∀j = 1, . . . ,n (from theorem 2.18).
Contradiction of conservation laws.

Suppose i∗ = 0.
⇒ d∗j = 0, ∀j = 1, . . . ,n (from theorem 2.18).
Contradiction of conservation laws.

Therefore, there are no boundary equilibrium points admitted by (26) and the
proof is complete. �

Theorem 4.5. The enzymatic mechanism (26) has a unique positive equilibrium point
in each positive compatibility class that is globally asymptotically stable.

Proof. The result follows directly from theorem 4.4 and theorem 4.1. �

4.3. General enzymatic mechanism with competitive inhibitor

Consider a one-enzyme, n-substrate, n-product enzymatic mechanism that is reg-
ulated by a competitive inhibitor. The competitive inhibitor competes with the substrate
to bind to the enzyme. When the inhibitor is successful in binding with the enzyme, the
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enzyme can no longer react with the substrate to form the enzyme–substrate complex,
and thus, the enzyme becomes inactive [12]:

S1 +E
k1

k−1

C1
k2

k−2

P1 +E,

S2 +E
k3

k−3

C2
k4

k−4

P2 +E,

... (27)

Sn +E
k2n−1

k−(2n−1)

Cn
k2n

k−2n

Pn +E,

E + I
k(2n+1)

k−(2n+1)

D.

This mechanism is weakly reversible, deficiency zero, and has the following
dimS⊥ = n + 2 positive conservation laws. These positive conservation laws were
found by applying the method used in section 4.1.1:

s1 + p1 + c1 = γ1,

s2 + p2 + c2 = γ2,
...

sn + pn + cn = γn,

i+ d= γn+1,

e+ d+ c1 + c2 + · · ·+ cn = γn+2,

where γi > 0 for i = 1, . . . ,n+ 2, as we are only interested in solutions that exist in
positive stoichiometric compatibility classes.

Theorem 4.6. The enzymatic mechanism (27) admits no boundary equilibrium points
in any positive compatibility class.

Proof. Assuming the mechanism admits an equilibrium point, denoted by (s∗1, . . . , s∗n,
p∗1, . . . , p∗n, c∗1, . . . , c∗n, d∗1, . . . , d∗n, i∗, e∗), the proof of this theorem is identical in form
to the proof of theorem 4.2.

Suppose ∃k, k = 1, . . . ,n, such that s∗k = 0.
⇒ c∗k = 0 (from theorem 2.18),
⇒ p∗k > 0 (from conservation laws),
⇒ e∗ = 0 (from theorem 2.18),
⇒ d∗ = 0 and c∗j = 0, ∀j = 1, . . . ,n (from theorem 2.18).
Contradiction of conservation laws.

Due to the symmetry of the mechanism, p∗k, k = 1, . . . ,n, is not equal to zero.
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Suppose ∃k, k = 1, . . . ,n, such that c∗k = 0.
⇒ e∗ = 0 or (p∗k = 0 and s∗k = 0) (from theorem 2.18).
If e∗ = 0,
⇒ c∗j = 0, ∀j = 1, . . . ,n, and d∗ = 0 (from theorem 2.18).
Contradiction of conservation laws.

If p∗k = 0 and s∗k = 0,
contradiction of conservation laws.

Suppose i∗ = 0.
⇒ d∗ = 0 (from theorem 2.18).
Contradiction of conservation laws.

Suppose e∗ = 0.
⇒ d∗ = 0 and c∗j = 0, ∀j = 1, . . . ,n (from theorem 2.18).
Contradiction of conservation laws.

Suppose d∗ = 0.
⇒ i∗ > 0 (from conservation laws).
⇒ e∗ = 0 (from theorem 2.18).
⇒ c∗j = 0, ∀j = 1, . . . ,n (from theorem 2.18).
Contradiction of conservation laws.

Therefore, there are no boundary equilibrium points admitted by the enzymatic
mechanism (27), and the proof is complete. �

Theorem 4.7. The enzymatic mechanism (27) has a unique positive equilibrium point
in each positive compatibility class that is globally asymptotically stable.

Proof. The result follows directly from theorem 4.6 and theorem 4.1. �

4.4. Enzymatic mechanism with noncompetitive inhibitor

There are three basic types of inhibition; competitive inhibition (section 4.2),
uncompetitive inhibition (section 4.3), and noncompetitive inhibition [4].

A noncompetitive inhibitor deactivates both the enzyme and the enzyme–substrate
complex, giving the following mechanism [12]:

S +E
k1

k−1

C1
k2

k−2

P +E,

C1 + I
k3

k−3

C2
k4

k−4

C3 + S, (28)

E + I
k5

k−5

C3.

However, mechanism (28) has a deficiency of one. Thus, even though it can
be shown that the mechanism does not admit a boundary equilibrium point in any
positive compatibility class, theorem 4.1 cannot be used to determine the mechanism’s
dynamics. The dynamics of mechanism (28) are, therefore, left for future research.
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